El Criterio de d'Alembert
Se utiliza para determinar la convergencia o divergencia de una serie de términos positivos cualquiera.
Definiendo con n a la variable independiente de la sucesión, dicho criterio establece que si llamamos L al límite para n tendiendo a infinito de
se obtiene un número L, con los siguientes casos:
El criterio de D'Alembert se utiliza para clasificar las series numéricas. Podemos enunciarlo de la siguiente manera:
Tal que:
f(n) > 0 (o sea una sucesión de terminos positivos) y
f(n) tienda a cero cuando n tiende a infinito (condición necesaria de convergencia)
Se procede de la siguiente manera:
con n tendiendo a infinito.
Así obtenemos L y se clasifica de la siguiente manera:
L < 1 la serie converge
L > 1 la serie diverge
L = 1 el criterio no sirve hay que aplicar otro criterio.
Criterio de Cauchy
Sea una serie
tal que ak > 0 (serie de términos positivos). Y supongamos que existe
siendo
Entonces, si:
L < 1, la serie es convergente.
L > 1 entonces la serie es divergente.
L=1, no podemos concluir nada a priori y tenemos que recurrir al criterio de Raabe, o de comparación, para ver si podemos llegar a alguna conclusión.
REFERENCIAS:
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.