martes, 3 de julio de 2012

4.6 “Representación de funciones mediante la serie de Taylor”


La serie de Taylor se basa en ir haciendo operaciones según una ecuación general y mientras mas operaciones tenga la serie mas exacto será el resultado que se esta buscando. Dicha ecuación es la siguiente:



o expresado de otra forma



Donde n! es el factorial de n




F(n) es la enésima derivada de f en el punto a



Como se puede observar en la ecuación, hay una parte en la cual hay que desarrollar un binomio (x-a) n por lo que para simplificar el asunto se igualara a "a" siempre a 0. Para fines prácticos no afecta mucho en el resultado si se hacen muchas operaciones en la serie.




La expansión en series de Taylor de n-ésimo orden debe ser exacta para un polinomio de n-ésimo orden.





Para otras funciones continuas diferenciables, como las exponenciales o sinusoidales, no se obtiene una estimación exacta mediante un número finito de términos.





El valor práctico de las series de Taylor radica en el uso de un número finito de términos que darán una aproximación lo suficientemente cercana a la solución verdadera para propósitos prácticos.





REFERENCIAS:
http://www.tonahtiu.com/notas/metodos/serie_taylor.htm

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.